Kuznetsov's Fano threefold conjectures for quartic double solids and Gushel-Mukai threefolds

        發布者:文明辦作者:發布時間:2020-12-21瀏覽次數:10


        主講人:張詩卓,University of Edinburgh


        時間:2020年12月31日10:00


        地點:3號樓332室


        舉辦單位:數理學院


        內容介紹:It is conjectured that the non-trivial components, known as Kuznetsov components  of derived category of coherent sheaves on every quartic double solid is  equivalent to that of Gushel-Mukai threefolds. I will introduce special  Gushel-Mukai threefold X and its Fano scheme of twisted cubics on it and prove  it is a smooth irreducible projective threefold when X is general and describe  its singularity when X is not general. We will show that it is an irreducible  component of Bridgeland moduli space of stable objects of a (-2)-class in the  Kuznetsov components of the special GM threefolds. I will show that an  irreducible component of Bridgeland moduli space of stable objects of a  (-1)-class in the Kuznetsov component of an ordinary GM threefold is the minimal  model of Fano surface of conics. As a result, we show the Kuznetsov's Fano  threefold conjecture is not true.

        上海福彩网 www.glass-suppliers.com:罗甸县| www.xsxonline.com:黑水县| www.ccshcy.com:和林格尔县| www.egehannakliyat.com:承德市| www.all-best-slots.com:宜昌市| www.cp5593.com:泰和县| www.frmep.com:厦门市| www.tudakozoonline.com:吉首市| www.gangesfruit.com:赤城县| www.bromoijenvacation.com:保德县| www.zxtyw.cn:荔浦县| www.thailandelitevisa.org:遂川县| www.zckhw.cn:西宁市| www.materiel-beaute.com:天长市| www.blackpigfestivalenniscrone.com:区。| www.gparkin.com:合阳县| www.hnbdfw.com:彰化市| www.blackphoenixband.com:扬州市| www.cp6335.com:灌云县| www.mulama.com:恩施市| www.ramexrentacar.com:宜州市| www.i-vv8.com:临澧县| www.choicecityrebels.com:台江县| www.bjjyzy.com:南靖县| www.digishoppy.com:增城市| www.lts-portal.org:东辽县| www.hireandrental.com:通辽市| www.fenggongsi.com:赤壁市| www.frizerski-salon.net:淮北市| www.apjiahaisw.com:延吉市| www.alpacitnz.com:嘉义市| www.abc-telecom.com:旌德县| www.99jsdc.com:井陉县| www.sanxinghr.com:西华县| www.posthostelprague.com:库伦旗| www.quintamontepalmira.com:惠州市| www.dirload.com:隆德县| www.mfbbn.com:时尚| www.ikanbawal.com:喀喇沁旗| www.imoglobalchance.com:隆回县| www.leopad.net:平原县| www.ppdownloader.com:电白县| www.szjiruicctv.com:华蓥市| www.88dgj.com:龙里县| www.jnwfm.cn:枝江市| www.baoxin2car.com:崇州市| www.extreme-projects.com:堆龙德庆县| www.bestjav4you.com:昭通市| www.aiyoudian.com:南平市| www.thsxled.com:都兰县| www.glassfart.com:福州市| www.atlanteventuresmezzogiorno.com:贵溪市| www.joedonovanpersonaltraining.com:永康市| www.heixiule.com:渭南市| www.lapakpoker.org:岱山县| www.parachuteins.com:鹿邑县| www.genoad.com:鄂州市| www.div3rec-culture.com:丽江市| www.theslec.com:贵南县| www.flksk.cn:大城县| www.66356gg.com:响水县| www.jnlezuo.com:滕州市| www.krntz.com:溧阳市| www.e-andac.com:磴口县| www.amb-eco.com:阿瓦提县| www.ehsggs.com:盐亭县| www.th335.com:大新县| www.sun-automation.com:隆安县| www.118coffee.com:鸡东县| www.company-in-china.com:岱山县| www.szjiruicctv.com:秦皇岛市| www.aromatherapy-eucalyptus.com:姜堰市| www.bol-usa.com:神农架林区| www.cs98ktv.com:镶黄旗| www.xoolyi.com:双桥区| www.crowsphotography.com:木兰县| www.tjlc56.com:雅安市| www.krntz.com:三都| www.daliancreation.com:江阴市| www.jsxyybj.com:陆河县| www.hw-decor.com:棋牌| www.sdwxm.com:彭州市| www.makpad.com:团风县| www.ck733.com:蒙阴县|